

Supported by



## Determination of Heating Efficiency of HHFW in NBI target plasmas



#### B.P. LeBlanc PPPL

#### NSTX Research Forum 2010 1-3 December 2009, Princeton, NJ





Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

#### **Determine HHFW Efficiency via Neutron Rate**

- Obtain a map of the HHFW coupling efficiency of NBI target plasmas against operation conditions
- Experimental determination of the fraction of the rf power coupled to the plasma core based on the measured neutron production rate enhancement during HHFW heating.
  - This rugged effect is routinely observed and pertains only to the core plasma
  - Subject of APS-DDP talk in 2009
    - LeBlanc et al. JO4.00011
- Apply this analysis for NBI induced H-mode (high priority) and L-mode target plasmas



#### Newer TORIC in TRANSP Provides Improved Analysis Tool Supplement analysis with CQL3D

- TRANSP makes use of recent version of TORIC, which can compute HHFW propagation and absorption in NSTX
  - M. Brambilla, Plasma Phys. Control. Fusion 44 (2002) 2423-2443
- TORIC calculates power deposition into all species including fast ions
  - But TRANSP RF Monte Carlo Fokker-Planck operator is not ready
  - Self-consistent calculation of fast ions not available for NBI + HHFW plasmas
- Use CQL3D to estimate neutron rate generated by fast ions
- Analyze two cases
  - HHFW generated high-T<sub>e</sub> plasmas
  - HHFW heating of NBI-induced H-mode plasmas



### Measured Stored Energy and Neutron Rate Exceed TRANSP Calculations during HHFW Pulses



Will look at data in bottom panel



#### CQL3D Suggests ≈40% of HHFW Power Ultimately Coupled to Plasma Core





# **EXTRA SLIDES**



6

### Surface FW Propagation Supports Surface Loss at Lower k<sub>II</sub>



- Propagation is very close to wall at  $k_{\parallel} = 8 \text{ m}^{-1}$ , on wall at  $k_{\parallel} = 3 \text{ m}^{-1}$  J.C.Hosea
- Losses in surface should be higher for lower k<sub>II</sub>
- Propagation angle relative to B much less than for lower harmonic case
- Increasing B should move onset farther from antenna, increasing heating